摘要

为了提升模式分类泛化性能,该文提出一种新颖的具有磁场效应的大间隔支持向量机(MFSVM)。为了学习最优分割超平面,MFSVM通过引入最小化的q-磁场带,使得一类(或正常类)被包含其中,而另一类(或异常类)与该q-磁场带的间隔尽可能地大,从而实现类内内聚性的提高和类间间隔的增大,增强SVM学习泛化能力。在人造和实际数据集上实验结果显示,MFSVM分别在二类和一类模式分类上的性能均优于或等同于相关方法。