摘要

针对超声波检测的储罐缺陷的面积量化问题,提出一种改进的储罐腐蚀缺陷面积量化模型。该模型利用XGBoost的特征重要度对人工神经网络(ANN)的参数进行先验初始化实现ANN模型的改进。该模型可以更快的收敛,并且提高准确率。按照国家标准设计实验平台,获取实验信号,并提取信号的统计特征得到特征数据集,利用数据集训练和测试改进的模型,并与传统模型进行对比。通过实验验证得出,改进的ANN模型能够更快的收敛,并且准确量化缺陷面积,相比于ANN量化模型,在训练集上准确率提高了17.9%,达到了98.3%,在测试集上提高了16.6%,达到了92.2%。

  • 单位
    成都工业学院; 石油大学机电工程学院

全文