摘要
针对电力负荷序列不平稳、随机性强,直接输入模型会导致拟合效果差、预测精度低等问题,提出了一种基于添加互补白噪声的互补集合经验模态分解(Complementary Ensemble Empirical Mode Decomposition, CEEMD)以及门控循环单元神经网络(Gated Recurrent Unit Neural Network, GRU)融合的预测方法。针对传统经验模态分解(Empirical Mode Decomposition, EMD)方法处理干扰信号大的序列时,存在的模态混叠问题,提出了CEEMD方法,加入互补白噪声,将原始序列分解成不同尺度的子序列输入GRU神经网络,并优化网络参数,最终获得预测结果。通过实验证明,该方法重构误差小,预测效果好。
- 单位