摘要

针对基本MFO算法存在后期收敛速度较慢、收敛精度低等缺点,提出了一种基于差分进化的改进飞蛾优化算法(DEMFO)。该算法首先将差分进化算法融合到MFO算法中,使得飞蛾种群个体之间具有变异、交叉、选择机制,DEMFO算法拥有更强的全局和局部搜索能力;运用柯西变异算子对飞蛾最优位置进行变异更新产生新解,保持飞蛾种群的多样性,帮助算法跳出局部最优;再引入动态自适应权重因子,使飞蛾的更新方式更具灵活性,引导算法朝着正确的搜索方向进行,从而有效地提高了算法的收敛性和精度;对该算法用8个测试函数进行仿真实验,从实验结果可以看出DEMFO算法在收敛速度和收敛精度上有了显著提高。将该算法成功应用于求解电力系统负荷经济调度(Economic Dispatch,ED)模型,在Matlab平台对140台机组算例进行了仿真,相比基本MFO算法,提出的DEMFO算法能够获得更高质量的优化解,提供更好的负荷经济调度方案,从而有效降低发电成本,产生巨大的经济效益。