摘要

近年来,认知负荷过载成为影响在线学习效果的一个重要因素。为解决此问题,文章聚焦在线学习认知负荷评估,首先设计了基于多模态数据的在线学习认知负荷评估研究框架,包含多模态数据采集、多模态特征提取和评估模型构建三个部分。接着,文章通过实验,采集学习者在特定在线学习环境下的多模态数据,提取人脸表情特征、眼动追踪指标特征和脑电信号特征,构建在线学习认知负荷评估模型。之后,文章对评估模型的准确性进行验证,发现在五种机器学习算法模型中,KNN模型的综合性能最佳,故将此模型作为最终的在线学习认知评估模型;同时,文章对多模态数据进行了分析,发现多模态融合方法在认知负荷评估上具有优越性。文章构建的评估模型可赋能在线学习平台实现认知负荷的实时评估,进而实现基于认知负荷的个性化学习,增强学习动机,提升学习效果,促进在线教育质量提升。

全文