摘要

细粒度图像识别旨在从类别图像中辨别子类别。由于图像间只有细微差异,这使得识别任务具有挑战性。随着深度学习技术的不断进步,基于深度学习的方法定位局部和表示特征的能力越来越强,其中以卷积神经网络(CNN)和Transformer为基础的各类算法大大提高了细粒度图像识别精度,细粒度图像领域得到了显著发展。为了整理两类方法在细粒度图像识别领域的发展历程,对该领域近年来只运用类别标签的方法进行了综述。介绍了细粒度图像识别的概念,详细阐述了主流细粒度图像数据集;介绍了基于CNN和Transformer的细粒度图像识别方法及其性能;最后,总结了细粒度图像识别未来的研究方向。