融合显著性模型和高斯网模型的视网膜血管分割方法(英文)

作者:Lan-yan XUE; Jia-wen LIN; Xin-rong CAO; Shao-hua ZHENG; Lun YU
来源:Frontiers of Information Technology & Electronic Engineering, 2019, 20(08): 1075-1087.

摘要

视网膜血管分割是眼底图像分析的一个重要问题。本文提出一种融合显著性模型和高斯网(GNET)模型的新型深度学习结构分割视网膜血管。显著性图像替代原始图像作为GNET模型的输入。GNET模型具有双边对称结构。左边结构中,在第一层进行上采样操作,在其他层进行最大池化操作;右边结构中,在第一层进行最大池化操作,在其他层进行上采样操作。利用DRIVE数据库对所提方法进行评估。实验结果表明,与UNET模型相比,GNET模型能获得更精确的特征和更精细的细节。本文所提算法能提取准确的血管网络,与其他深度学习方法相比具有更高精确度。视网膜血管分割有助于提取血管变化特征,为脑血管疾病筛查提供依据。