摘要
扣件的健康状态是保障轨道车辆正常运行的关键。当前人工检测轨道扣件效率较低,具有缺陷性。针对这一问题,提出了基于改进YOLOv4算法的轨道扣件与检测。在YOLOv4网络中,利用CSPDarknet53第二个残差块嵌入conv卷积结构与YOLO头部结构,增加输出端,并进行网络中的上采样与下采样。与YOLOv4原算法模型相比,提升了准确率与检出率。将使用改进YOLOv4的方法,实现对有砟轨道与无砟轨道上扣件的状态检测。试验结果表明:基于改进YOLOv4算法检出率和准确率比原YOLOv4算法分别提升4.65%和4.88%,并且YOLOv4模型体积与其他模型相比更小,适用于轨道扣件检测。
- 单位