基于贝叶斯知识追踪的网安人才能力智能化评估方法

作者:张方娇; 赵建军; 刘心宇; 王晓蕾; 刘奇旭; 崔翔
来源:信息安全学报, 2021, 6(01): 62-77.
DOI:10.19363/J.cnki.cn10-1380/tn.2021.01.06

摘要

近年来,网络空间安全形势日益严峻,导致网络空间安全人才(以下简称网安人才)缺口巨大,国家加快网安人才评估的需求愈加强烈。针对当前网安人才能力评估精准度不足的问题,本文提出了一种改进的贝叶斯知识追踪CT-BKT(Cybersecurity Talents Bayesian Knowledge Tracing)模型,通过网安人才能力评估时的个性智能化问答过程,该模型可对网安人才的知识状态进行追踪,从而实现对其能力的动态精准评估。为了验证CT-BKT模型的有效性,本文以Web安全为例,梳理了Web安全的知识技能体系并构建了相应题库,实现了一个面向Web安全领域的网安人才技能智能化评估系统CTIES(Cybersecurity Talents Intelligent Evaluation System)。通过对22名网安人员进行Web安全的能力评估,本文提出的CT-BKT知识追踪模型的对网安人才的知识掌握状态的预测准确率较高,CTIES系统能细致且直观地展现网安人才Web安全的知识掌握程度及相应专业技能水平,验证了本文所提出的网安人才能力评估方法的可行性和有效性。

全文