摘要
振动信号处理与特征参数提取是实现齿轮智能故障诊断的关键。提出采用形态梯度算法对齿轮振动信号进行处理,既可以抑制噪声又可充分突出故障信号的冲击特征,能够在强噪声背景下有效地提取振动信号中反映齿轮工作状态的有用分量;在此基础上提出采用非负矩阵分解的特征提取方法对信号进行压缩,计算用于齿轮故障诊断的特征参量。结果表明,与传统的信号处理与特征参量提取方法相比,笔者提出的方法能够具有更高的分类精度,为准确判断齿轮工作状态提供了一种行之有效的新方法。
-
单位中国人民解放军陆军工程大学