摘要

为解决社区结构发现算法功能社区与拓扑社区不一致的问题,提出一种基于边类型相似性聚类(TESC)的社区结构发现算法。该算法以局部拓扑特征与异质信息为目标进行节点聚类,基于节点邻接边类型构造网络节点之间的相似矩阵,从而获取边异质信息。在该相似矩阵的基础上,通过传统层次聚类的思想将相似度大的节点进行合并,进而利用轮廓系数优化社区数量,得到最终社区划分结果。选取社区结构已知的4个真实网络和6个人工合成基准LFR网络,通过与同质网络的GN、Louvain算法以及异质网络的Hete-SPAEM、Hetero-Attractor算法对比,结果表明TESC算法获得的社区结构更接近于网络实际社区结构。

全文