提出了一种快速不确定数据流上的离群点检测算法.采用分层次划分思想给出了适用于流式数据的索引构建方法,并为索引结构中的叶子结点增加了部分存储信息,使得在数据更新时新流入的数据点可以利用中间结果信息直接完成批量过滤,降低计算成本.通过分析离群概率值求解的递推规律,给出了一种全新的离群概率值求解方案,该方案可以最大可能地避免全近邻集合的迭代计算,减少了大量的非离群点计算代价,从而加快处理速度.实验结果表明,快速不确定数据流上的离群点检测算法能够有效地提高检测效率.