摘要
为了提高公共自行车的使用效率和用户满意度水平,保证国内公共交通服务的合理运行与发展,根据公共自行车用车峰时和谷时的不同调度目标,建立两时期车辆调度模型。用车谷时以调度车路径最短为优化目标,用车峰时以用户满意度最高为优化目标。融合遗传算法(Genetic Algorithm, GA)和蚁群算法(Ant Colony System, ACS),形成遗传混合蚁群算法(Genetic Hybrid Ant Colony System Algorithm, GA-ACS),并将融合后的算法应用于调度模型中,以提升获得优化的车辆调度方案的求解速度和质量。群智能算法在不同数据集上的性能比较结果表明,与传统蚁群算法相比,遗传混合蚁群算法在求解速度和求解质量上都有更好的表现,在较短的时间内至少可以缩短10%的调度路程,因此该算法模型可以用于解决实际的公共自行车调度问题。
-
单位南京航空航天大学金城学院; 自动化学院