摘要
白细胞信号(WBS)具有脉冲形状多样和时频特性各异的特点,目前临床上用细胞信号脉冲计数的方法来分析WBS通常难以反映其所携带的丰富的生理和病理信息,并直接影响到细胞分类问题。针对这一问题,探索能自适应地分解非线性非平稳信号的希尔伯特-黄变换算法在WBC时频分析和分类中的应用效果。通过对血细胞中的WBC进行HHT变换,获取WBC的本征模态函数(IMF)分量、分量的Hilbert边际谱以及信号Hilbert谱;利用瞬时频率、瞬时幅值等进行计算提取健康人与患者的WBS平均强度、谱质心以及能量贡献率等特征作对比分析,根据其时频特征分布规律构建用于分类实验的特征向量;采用支持向量机(SVM)分类器,对58名健康人和60名患者的白细胞实验样本进行分类实验。结果表明,该方法提取的健康人和患者的WBS分量谱质心分布、平均强度值以及能量贡献率具有较好的区分度,分类正确率到达了94.83%。HHT方法能有效提取WBS特征,可辅助临床WBS的处理和分析。
- 单位