由于缺乏先验信息,组Lasso模型在训练时仅是基于组数参数对单元进行均匀、连续、固定的分组,缺乏分组依据,容易造成变量组结构的有偏估计。为此,提出特征聚类自适应变组稀疏自编码网络模型,在迭代过程中使用特征聚类法来改变隐层单元的分组,使得分组能够随着特征的收敛而自适应地发生改变,从而更好地实现变量组结构的估计。实验表明,该模型能够很好地捕捉训练过程中出现的组相关信息,并在一定程度上提高图像的分类识别率。