摘要
针对语义分割领域中多尺度共享网络训练复杂度高,以及网络在小目标、长条状目标、目标边缘处拟合效果不佳的问题,提出一种新型外接多尺度投票网络。通过投票网络融合各尺度分割结果,降低网络训练复杂度,并将共享网络中的分割网络与各尺度注意力头剥离开,仅训练各尺度注意力头,以便于网络收敛。在投票网络的结构设计中,使用多类别投票方法扩大投票空间,通过融入混合池化模块聚合近程与远程权值,扩大网络感受野,缓解权值图中长条状目标拟合间断与缺失的问题。在此基础上引入类内、类间投票注意力模块获取权值及类间关系,并采用不规则卷积,改善投票权值图的边缘拟合效果。在Cityscapes数据集上的实验结果表明,相比FCN、PSPNet、DeepLabv3+分割网络,该网络的平均交并比分别提升了0.92、0.88、0.80个百分点,与共享网络相比,其训练复杂度更低,精度更高。
- 单位