摘要
预测因子作为中长期预报模型的输入项,是影响预报结果精度的关键要素。为进一步提高预报精度,提出了一种Copula熵与随机森林模型相结合的中长期径流预报方法。该方法首先采用Copula熵指标对预测因子进行筛选,然后将选取的预测因子作为输入项,导入随机森林模型中对月径流进行相应预测。将该方法应用于汉江流域丹江口水库的逐月入库径流预报中,并与相关系数筛选法进行对比。结果表明:基于Copula熵指标筛选出的预测因子对应的模拟结果具有更高的精度,尤其对于汛期而言,其模拟值与实测值的拟合优度显著优于比选方法,说明其筛选出的预测因子具有更好的合理性。
-
单位长江水利委员会水文局