摘要
轴承作为旋转机械中的重要部件,对其性能退化状态进行准确评估是开展预测性维护的重要前提。针对现有性能退化指标在鲁棒性和敏感性上的不足,提出一种基于多尺度威布尔分布与隐马尔可夫模型(Hidden Markov model, HMM)的滚动轴承性能退化评估方法。首先,采用经验模态分解(empirical mode decomposition, EMD)对轴承振动信号进行多尺度分解,将轴承振动数据分解到不同尺度的本征模态分量(intrinsic mode function, IMF)中;然后,通过峭度指标选取故障特征信息明显的IMF分量,并对各个IMF分量进行滑动窗口威布尔分布拟合,提取多尺度威布尔形状参数作为性能退化特征;最后,将轴承正常状态下退化特征参数输入隐马尔可夫模型(Hidden Markov model, HMM)进行训练,建立性能退化评估模型,从而实现轴承性能退化评估。试验结果表明,该评估方法可以有效反映轴承的性能退化趋势,与其他相关方法相比,该方法能够及时识别到轴承早期故障,并且具有较强的稳定性。
- 单位