摘要

在计算机辅助骨科手术系统中应用增强现实技术能帮助医生准确地定位患者的病灶部位,而视频图像的目标跟踪匹配是实现增强现实的关键技术。针对视频图像匹配中SURF (speed up robust features)特征点性能和匹配效率不足的问题,提出一种改进的基于SURF特征点的FLANN (fast library for approximate nearest neighbors)匹配算法。提取SURF关键特征点,改进其描述符算子,使用改进的FLANN算法进行特征点匹配。通过实验分析比较改进与未改进算法的性能,结果表明该方法的稳定性及快速性较好,具有较强的鲁棒性。

全文