摘要

为了对新型冠状病毒肺炎(COVID-19)传播趋势实现更精准的分析与预测,基于传统的传染病动力学模型SEIR(susceptible-exposed-infectious-recovered)和长短期记忆(long short-term memory,LSTM)深度学习网络构建了一种混合模型SEIR-LSTM,结合全国和湖北省的疫情数据进行分析与预测.从实验结果来看,相较于传统的机器学习、多项式拟合、普通的SEIR模型和单一的LSTM,所提出的混合模型能取得更高的疫情预测精度.最后给出了对疫情发展的预测,对疫情防控具有一定的应用价值和社会价值.