摘要

[目的/意义] 探索不同社会科学学科间差异,支持学科建设、科技检索服务,进一步完善文献学科的分类体系。[方法/过程] 基于多种深度学习模型和预训练语言模型构建社会科学文献学科分类器,利用CSSCI目录中的20多个一级学科中近350万篇文献构成的数据集进行实验;利用Sentence-BERT输出摘要句子向量并进行层次聚类,根据聚类结果划分学科组,并计算模型对于不同学科组的分类性能以缓和学科交叉的影响;利用模糊准确性指标输出模型对每条记录输出的前N个高概率学科以弥补原有学科分类的局限性。[结果/结论] 在“摘要+标题”上使用深度预训练语言模型取得最佳性能;基于层次聚类所得的学科组进行的分类较单一学科性能有所提升;模型的模糊准确性在N=3时能够达到96%。[局限] 未考虑从全文文本上获取更丰富的文献学科特征进行自动分类。