摘要
可溶性固形物(SSC)和可滴定总酸(TA)含量是影响李果实品质的重要指标,经典的破坏性检测方法不适用于果实按品质分级,近红外光谱(NIRS)检测方法具有速度快、操作简便、可无损检测果实品质。为实现NIRS无损快速检测安哥诺李果实可溶性固形物和可滴定总酸含量,利用NIRS采集李果实的漫反射光谱,同时采用糖度计测定安哥诺李果实的SSC,采用滴定法测定了李果实TA含量,使用杠杆值和F概率值剔除异常样品,采用软件优化结合人工筛选光谱波段,使用了消除常数偏移量、减去一条直线、矢量归一化(SNV)、最大-最小归一化、多元散射校正(MSC)、一阶和二阶导数结合平滑处理、一阶导数结合减去一条直线和平滑处理、以及一阶导数结合SNV或MSC校正等光谱预处理方法,分别采用偏最小二乘法(PLS)和主成分分析结合反向传播人工神经网络(BP-ANN)建立李果实SSC、 TA的定量分析模型。结果表明,李果实SSC和TA的最佳PLS建模效果波段范围分别为4 000~8 852和4 605~6 523 cm-1。SSC的PLS模型的最佳光谱预处理方法为MSC校正,最佳模型校正相关系数(Rc)为0.914 4,预测相关系数(Rp)为0.878 5,校正均方根误差(RMSEC)为0.91,预测均方根误差(RMSEP)为1.00。经一阶微分结合SNV和9点平滑的方法预处理后,TA的PLS模型效果最佳,Rc,Rp, RMSEC, RMSEP分别为0.860 3, 0.819 6, 0.80和0.86。提取了李果实SSC和TA光谱数据的主成分,并基于前10个主成分得分建立了李果实SSC和TA最佳BP-ANN定量分析模型,其Rc,Rp, RMSEC和RMSEP分别为0.976 7, 0.889 7,0.75和0.99; TA的BP-ANN模型的相应参数值依次为0.974 3, 0.897 7, 0.62和0.83,与采用PLS算法建立的定量模型相比较,BP-ANN模型具有较高的Rc,Rp和较低的RMSEC, RMSEP,因此BP-ANN模型对SSC和TA指标的定量分析结果更佳。
- 单位