摘要
针对现有自组织迁移算法()只能求解单个优化问题及其"隐并行性"未能被充分挖掘的缺陷,提出信息筛选多任务优化自组织迁移算法(SOMAMIF)实现同一时刻处理多个优化问题。首先,构造多任务统一搜索空间,并根据任务个数设置相应的子种群;然后,对各子种群当前最优适应值进行判断,当任务连续若干代停滞进化时则产生信息交互需求;接着,按概率从剩余子种群中筛选对自己有用的信息并过滤无用信息,从而在保证信息正向迁移同时实现种群结构的重新调整;最后对算法的时间复杂度和空间复杂度进行分析。实验结果表明,SOMAMIF在同时求解多个高维函数优化问题时均快速收敛至全局最优解0,而SOMAMIF与分形技术相结合同时提取不同户籍高校学生返乡关键制约因素时,其在两个数据集上得到的平均分类准确率与原始数据集的平均分类准确率相比分别提高了0.348 66个百分点和0.598 57个百分点。
- 单位