摘要
针对稀疏水声信道的长时延扩展及梯度下降的权值迭代方案导致的神经网络均衡器收敛速度慢的问题,提出了近似L0范数约束的BP神经网络均衡器。首先在传统BP网络均衡器基础上增加判决反馈项,然后在代价函数中对均衡器输入层到隐含层的权值增加L0范数约束,构造新的代价函数,利用高斯族函数近似L0范数约束,并根据不同隐层神经元节点输出权值的L2范数设定近似参数。仿真结果表明,稀疏信道条件下,本方法相比传统的BP网络均衡器收敛速度更快,误码率更低,可以有效提升神经网络均衡器的性能。
-
单位中国科学院声学研究所; 中国科学院大学; 声场声信息国家重点实验室