摘要

大规模的netflow训练数据集是构建高质量、高稳定网络流量分类器的必然要求。但随着网络流特征维数的提高和数据集规模的扩大,无论是网络流的分析处理还是基于支持向量机(SVM)的分类器模型的训练,都无法在有效的时间内得到有效的处理结果。本文基于Hadoop云计算平台,采用MapReduce技术对SVM网络流量分类器进行分布式学习和训练,构建CloudSVM网络流量分类器。通过对来自校园网出口镜像的近2T的大规模网络流量的跟踪文件的分布式存储和处理,对抽取的样本数据集进行分类,实验验证了基于Hadoop平台分布式存储和并行处理大规模网络数据集的高效率性,也验证了CloudSVM分类器在不降低分类准确度的情况下可以快速收敛到最佳,并随着大规模网络流样本的增加,SVM分类器训练的时间趋近平稳。

  • 单位
    长沙民政职业技术学院