摘要

[目的/意义]有效融合引文网络中的引用关系和文本属性等多元数据,增强文献节点间的语义关联,从而为数据挖掘和知识发现等任务提供有力的支撑。[方法/过程]提出了一种引文网络的知识表示方法,先利用神经网络模型学习引文网络中的k阶邻近结构;然后使用doc2vec模型学习标题、摘要等文本属性;最后给出了基于向量共享的交叉学习机制用于多元数据融合。[结果/结论]通过面向干细胞领域的CNKI引文数据集的测试,在链路预测上取得了较好的性能,证明了方法的有效性和科学性。