摘要

针对道路交通的复杂性,提出利用改进的径向基函数神经网络算法处理车辆的动态称重数据。该算法使用粒子群寻优的方式确定RBF神经网络中心,通过惯性权重因子控制寻优速度,将车辆的动态称重重量、车速、车长、轴数作为辅助神经网络的输入向量预测真实车重。训练结果表明,车辆速度与误差率呈正相关关系,改进的RBF神经网络可以明显提升动态称重数据的精度,在处理高速数据时,改进的RBF算法优化效果更好,在实际应用中具有重大意义。