摘要
针对新闻文本摘要提取过程中,传统抽取式算法存在对文本内容概括不全面、摘要内容冗余、关键词提取时未考虑异词同义等问题,提出了一种基于最大边界相关算法(MMR)和词汇语义网(WordNet)的新闻文本摘要生成算法——WMMR.该算法综合考虑文本相似度、关键词、句子位置信息、线索词等特征对句子权重的影响,从而优化MMR算法中的句子得分,并在计算关键词得分时引入WordNet合并同义词.在NLPCC2017公开数据集上验证本文算法的有效性,结果表明WMMR算法的ROUGE值相较于TextRank算法提升4个百分点,相较于MMR算法提升7个百分点.在神策杯2018与SogouCS公开数据集上验证本文算法的普适性,结果表明WMMR算法的ROUGE值相较于传统TextRank,MMR等算法均有提升,证明WMMR算法有效提升了生成摘要的质量.
- 单位