摘要

针对磁共振成像(magnetic resonance imaging,MRI)超分辨率重构任务,提出了Wasserstein生成式对抗网络(Wasserstein generative adversarial network,WGAN),构建了合适的网络模型与损失函数;基于残差U-net WGAN后端上采样超分模型,设计了感知、纹理和对抗损失,用于恢复低分辨率MRI影像中的细节信息.此网络在2D-MRI的3 000张脑影像上获得的峰值信噪比(peak signal to noise ratio,PSNR)是33.09 dB,结构相似度(structural similarity index measure,SSIM)的平均值为0.95;PSNR与SSIM的值与经典超分法相比较,分别增加了4.09 dB和0.06.这表明:网络能更好地学习MRI从低分辨率到高分辨率影像之间的映射关系;该方法有效稳定,可以广泛应用于相似系统.