摘要
目的通过基于胸部CT影像组学的列线图对非小细胞肺癌(NSCLC)表皮生长因子受体(EGFR)基因突变进行鉴别和预测。方法回顾杭州市第一人民医院2019年1月至2020年8月经病理检查证实为NSCLC的153例患者胸部CT图像及EGFR基因检测结果,将所有患者分为基因突变组90例及野生组63例,通过7︰3比例的分层抽样将所有患者分为训练组108例和验证组45例,提取所有CT图像影像组学特征并筛选,得到影像组学特征参数分数(Rad-score),同时建立影像组学特征模型。通过纳入Rad-score、图像语义特征及患者的临床资料,用多因素二元logistic回归建立联合模型,得到联合模型的列线图,实现模型可视化,并进行模型验证。绘制ROC曲线评价影像组学特征模型、临床-语义特征模型及联合模型对NSCLC EGFR基因突变的预测效能。结果联合模型对于鉴别NSCLC EGFR基因突变具有较好的预测效能,训练组AUC=0.77,95%CI:0.680.85,准确度为70.0%,灵敏度为0.67,特异度为0.76,阳性预测值为79.3%,阴性预测值为61.8%;验证组AUC=0.77,95%CI:0.630.91,准确度为71.1%,灵敏度为0.79,特异度为0.62,阳性预测值为70.4%,阴性预测值为72.2%。Ra d-s c ore、结节分型、吸烟史均为独立预测因子。结论通过基于胸部CT Rad-score、图像语义特征及临床特征资料建立的的联合模型所得到的列线图,对预测NSCLC EGFR基因突变具有一定价值。
-
单位杭州市第一人民医院; 杭州师范大学