摘要

Hammerstein系统是一类典型的块结构非线性系统,由非线性静态子系统和线性动态子系统构成,由于模型中含有未知非线性变量,传统辨识算法往往存在辨识精度不高、辨识效果差等问题。因此,基于启发式的智能优化算法受到了关注。差分进化(Differential Evolution, DE)算法是一种模拟自然界生物种群“适者生存”原则的智能算法,待定参数少,收敛速度快,但会陷入局部最优。针对这一局限性,提出一种改进差分进化算法来辨识Hammerstein受控自回归滑动平均模型。在基本差分进化算法的基础上改变了变异操作和交叉操作,加入自适应因子。推导了递推最小二乘算法来辨识Hammerstein系统,并将其与改进的差分进化算法进行比较。通过仿真例子测试算法性能,结果表明,相对于递推最小二乘算法、基本DE算法和粒子群算法,改进差分进化算法在精确度和收敛速度上更优。将改进DE算法用于连续搅拌反应釜的辨识,取得了较好的辨识效果。