摘要
2010年浏览器指纹的概念被提出用于识别用户身份,目前这项技术已趋于成熟并被广泛应用在一些流行的商业网站进行广告投放.然而传统的指纹技术在追踪用户方面问题颇多,无论系统升级、浏览器更新还是篡改程序伪造导致的指纹特征值改变,都会使浏览器指纹发生变化.在对浏览器指纹属性进行研究的基础上,采集了安卓用户的浏览器指纹,提出了一种用于身份识别的监督学习框架RNNBF.RNNBF的鲁棒性分别体现在数据和模型方面,在数据方面构建基于指纹的数据增强技术生成增强数据集,在模型方面采用注意力机制令模型专注于具有不变性的指纹特征.在模型评估方面,RNNBF模型与单层LSTM模型和随机森林模型分别进行比较,当以F1-Score作为评估标准时,RNNBF模型的识别效果优于后两者,证明了RNNBF模型在动态链接指纹上具有卓越的性能.
-
单位中国科学院大学; 中国科学院信息工程研究所; 中国信息通信研究院