摘要

在海事搜救、海关缉私等应用中,对目标船舶进行航迹预测是一个关键问题。为提高预测的精度和效率,提出了一种基于循环神经网络的船舶航迹预测方法,该方法包含数据预处理和神经网络预测两个部分。在数据预处理中,设计了一种基于对称分段路径距离的数据预处理方法,消除了大量冗余数据及噪声的影响;在神经网络预测中,构建了基于门控循环单元的循环神经网络模型,实现船舶位置信息精准且高效的预测。通过大量船舶自动识别系统数据进行了对比实验,实验结果证明了方法的实用性和有效性。