摘要

在火电厂燃煤锅炉运行过程中,受热面的积灰是降低锅炉运行效率和安全性的一个重要原因。对此,各研究者根据建立固定的预测模型制定吹灰策略,认为是及时吹灰而忽略了吹灰需要一定的准备时间。针对上述问题,不仅在数据预处理时,采用时间序列随机选取的方法反映不同工况下的灰污沉积厚度,而且提出了基于清洁因子(CF)的Elman时序神经网络动态预测模型。为了构造合理的网络模型,采用试凑法得到最优隐含层节点数。最终,通过正态概率密度(PDF)曲线验证了该模型预测的精准性,并对比分析了在不同预测起始点滚动预测的结果。经实例仿真,结果显示Elman网络模型的预测结果与实际监测数据的吻合度较高。从而为下一步的吹灰优化研究奠定了坚实的基础。