摘要

针对遥感场景图像中背景复杂、类内差异大以及类间相似度高问题所导致的分类效果欠佳情况,提出一种基于有监督对比学习的注意力机制和残差收缩单元算法。首先对有效通道注意力机制(ECA)进行改进,优化对待识别图像特征的提取;然后提出一种协同残差收缩单元算法,利用算法对图像进行冗余信息的筛选消除;再用有监督对比学习算法,增强算法的泛化能力。最后在遥感图像数据集进行实验,并与最新算法如增强注意算法、尺度注意力机制算法进行对比。实验表明,该算法在20%训练比例的AID数据集中分类精度提高了1.75%和2.5%。

全文