摘要
为预测缓坡场地地震液化侧向位移,基于改进自适应算法(Rectified Adam)和循环神经网络模型(RNN),提出液化侧移预测模型RA-RNN,通过对侧移数据进行样本学习,并利用改进自适应算法优化循环神经网络结构,验证RA-RNN模型可靠性,并与多元线性回归法(MLR)计算结果进行对比。结果表明:RA-RNN模型计算得到侧移一般为实测位移的0.7~1.3倍,训练结果R2,RMSE,MAE分别为0.977,0.375,0.141;土耳其科喀艾里RA-RNN模型预测结果RMSE和MAE为MLR模型的1/26,1/830;中国台湾集集镇RA-RNN模型预测结果RMSE和MAE为MLR模型的1/18,1/350,RA-RNN模型预测结果较优,预测精度及泛化能力得到很大提升。
-
单位江西省环境岩土与工程灾害控制重点实验室; 江西理工大学