摘要

针对向量自回归模型(VAR)的高维估计问题,结合贝叶斯理论提出了一种融合正态-逆Wishart共轭先验分布的估计方法。在该估计方法中,所提出的模型引入Metropolis-Hastings(MH)算法,从以往数据集中确定先验分布超参数,并通过设定与模型尺寸相关的收缩系数从而进行估计。与传统VAR模型相比,基于贝叶斯理论的估计方法可在保留相关样本信息的同时控制过度拟合,具有较好的稳健性和有效性。此外,在改进的BVAR模型基础上,结合区制转移技术与误差修正模型提出了MS-BVECM模型,该模型能够有效分析经济周期内各变量之间长期与短期均衡状态变化,当短期内经济变量受到波动而与长期均衡状态发生偏离时,误差修正模型机制会使其逐渐重新回到长期均衡状态,以保证模型的稳健性。最后,以重庆市为例,利用所提模型对其能源消费、产业结构升级和经济增长的动态关系进行了分析与预测并提供了可行建议。

全文