摘要
针对AdaBoost算法的多轮迭过程会放大为实现差分隐私保护而添加的噪声,从而导致模型收敛缓慢、数据可用性大幅降低的问题,提出了一种基于目标扰动的AdaBoost算法——DPAda,采用目标扰动的方式对样本权值进行加噪,精确计算其敏感度,并赋予其动态的隐私预算。为了解决噪声叠加过多的问题,提出基于摆动数列、随机响应和改进的随机响应3种噪声注入算法。实验结果表明,与DPAda_Random算法和DPAda_Swing算法相比,DPAda_Improved算法能实现数据的隐私保护,拥有更高的分类准确率,优于其他差分隐私AdaBoost算法,并能解决连续加噪带来的噪声过大的问题。
- 单位