摘要
本发明公开了一种基于同态加密的线性回归纵向联邦学习方法,包括步骤:a)建模训练;b)两种预测。建模训练:采用minist数据集,步骤如下:owner即数据应用方,利用Paillier生成公私钥对,consumer即数据持有,计算特征值与特征矩阵的乘积发送给owner,owner计算预测标签通过与实际Y对比得到然后计算梯度,利用梯度来更新特征值的权重,直到模型达收敛范围,训练结束。预测方法1:无第三方,consumer计算特征值与特征矩阵的乘积发给owner,计算预测值返回给consumer。预测方法2:基于差分隐私,Carol整合双方特征参数后发给consumer,consumer计算预测标签将结果发给Carol。本发明创新点:训练阶段,梯度始终加密,无第三方,未暴露过多特征参数;预测阶段可防止合谋攻击。
- 单位