摘要

为探究不同机器学习模型在我国南方典型湿润山区的植被类型分类效果,基于无人机遥感影像、实地观测数据、数字高程模型建立遥感特征,选用决策树、随机森林、支持向量机和AdaBoost模型在安徽屯溪流域构建植被类型遥感分类模型;选择总体精度、Kappa系数、均方误差、用户精度和生产者精度等评价指标,分析对比4种机器学习模型在典型小流域的适用性。结果表明:对于林地类型,AdaBoost模型分类精度最高,表明AdaBoost模型在林地分类中有明显的优势;对于非林地类型,模型之间精度差异较大,随机森林模型精度最高;整体而言,4种模型在南方典型湿润山区典型小流域均可获得较好的分类效果,其中AdaBoost模型总体精度为95.55%、Kappa系数为0.9419,均为最高,支持向量机模型表现均最低。地形因子、纹理特征等辅助特征为分类过程提供了重要信息,有助于提高分类精度。

  • 单位
    水文水资源与水利工程科学国家重点实验室; 河海大学