摘要
本发明公开了一种基于轻量级卷积神经网络的实时多尺度目标检测方法,该检测方法过程如下:采用聚类算法对训练数据集样本目标的高宽比和面积尺度系数进行聚类,聚类中心用于优化锚点框设置;利用轻量级卷积神经网络作为RetinaNet框架的骨干网络,降低模型复杂度;同时利用残差模块对多尺度特征图进行增强,对部分增强多尺度特征图进行自适应跨层特征融合,最后利用生成的融合特征金字塔代替特征金字塔,提高模型对中小目标的检测精度。本发明公开的轻量级多尺度目标检测方法,可以在保证一定准确率的情况下,减少模型的参数量,降低模型的运算复杂度,提高模型的检测效率。
- 单位