基于遗传算法的土壤质地高光谱预测模型研究

作者:乔天; 吕成文*; 肖文凭; 吕凯; 水宏伟
来源:土壤通报, 2018, 49(04): 773-778.
DOI:10.19336/j.cnki.trtb.2018.04.03

摘要

为快速、准确地获取土壤质地信息,利用遗传算法结合偏最小二乘法(GA-PLS)回归建立土壤质地预测模型。采集了丰乐河流域162个表层土样,在实验室内对土样进行质地分析和光谱测量,采用遗传算法(Genetic Algorithm)筛选土壤质地光谱特征波段,在此基础上运用偏最小二乘法(PLS)构建了土壤质地预测模型,并与全谱段PLS模型进行对比分析。结果表明:基于遗传算法结合偏最小二乘的模型验证精度高于全谱段PLS模型,粉粒光谱验证集R2达到0.841,RPD为2.391,较全谱段PLS模型RPD提高了18.13%,提升效果显著;砂粒光谱验证集的R2为0.721,RPD为2.142,较全谱段PLS模型RPD提高了10.41%。遗传算法结合偏最小二乘法(GA-PLS)在土壤质地高光谱估测中,压缩了光谱变量,减少了数据冗余,提高了模型预测精度。

全文