摘要
人体行为识别可以定义为通过一系列观察和周围环境来确定一个人的各种姿势和日常活动。很多研究尝试将深度学习技术用于HAR中,然而,现有的基于DL的HAR方法存在复杂度较高、算力需求大和泛化性与鲁棒性不足的问题。为了解决上述问题,围绕基于智能手机内置IMU传感器的HAR方法,提出了一种名为RMDML的HAR方法,该方法结合了轻量化神经网络Res-MLP和深度度量学习的特征嵌入技术,旨在提取具有可分离性与可判别性的泛化特征,从而提高模型识别性能和泛化性能。RMDML模型在公开数据集UCI HAR上取得了97.26%的准确率,高于几种常见的HAR算法,证明了所提出方法的有效性。
-
单位南京邮电大学; 通信与信息工程学院