摘要

目的在视频监控和人群模式行为理解的重要应用中,识别分割场景中的集体行为仍然是一个极具挑战性的问题。在这项研究中,提出一种基于流形密度的集体聚类算法,能够识别具有任意形状和不同密度条件下的集体行为的局部和全局模式。方法受群体运动行为的流形拓扑结构启发,首先提出一种新的流形距离度量方式用于挖掘群体运动的深层行为模式。进一步定义了集体聚集密度的概念,并通过基于聚集密度的聚类算法识别具有局部一致性行为的群组,这种策略更适用于识别具有任意形状的聚类。同时考虑到子群组之间的复杂交互作用,引入层次聚集合并算法得到全局集体行为模式,可以有效地表征全局一致性关系。结果针对不同情况下的复杂场景,本文算法在集体视频监控数据集下的实验结果表明了其有效性和鲁棒性,相比于传统的聚类方法和标准经典算法,以平均误差(AD)和方差(VAR)作为评价指标来评价算法性能,本文方法将识别分割聚集行为群组的误差率结果控制在了0. 81和0. 99以内,相比许多经典方法有较大提升。同时在具有复杂流形结构及任意密度条件下的人群场景中能够取得精确有效的识别结果,解决了经典方法在该特殊场景下存在的缺点。结论本文针对已有方法在流形结构场景识别集体行为流向缺乏精确性和稳定性的描述和分析这一问题,提出了基于流形密度的群组聚集聚类识别算法,在多个复杂真实视频数据集中进行实验,证明了所提方法的有效性,并相比于已有方法具有更高的识别精度。