摘要

汽油管道调合的在线优化过程中,调合优化与控制系统对近红外光谱模型的依赖很大。光谱模型的精度及适应性直接影响整个在线调合系统。本文就如何建立适用于在线汽油调合的汽油辛烷值近红外光谱模型展开研究,提出一种采用主元分析(PCA)结合人工神经网络(ANN)的方法建立汽油近红外光谱辛烷值模型的方法;并与多元线性回归及偏最小二乘法建立的线性模型做比较。结果表明主元分析结合人工神经网络所建立的模型适应性较高、抗干扰能力强,适合汽油在线调合的现场应用。