摘要

光储充电站(PSCS)的规模化部署是电动汽车(EV)快速普及的关键因素。合理规划光储充电站的运行模式并有效调度多种能源,优化需求供给链,最大化运行效益,是光储充电站可持续运营发展的重点。针对目前光储充电站需求侧的不确定性和供给侧的协调性问题,面向汽车充电预约场景,在需求侧综合考虑汽车充电需求和剩余停车时长等因素,决策相应EV的充电方式。在供给调度侧设计一种基于带精英策略的遗传混合递推算法(EGAHR)进行能量优化调度,以最小化电网取电费用。以EV充电时间片为基本调控时间单元,通过协调需求侧和供给侧的调度信息,合理调度光伏、储能、电网等能源的能量,满足当前时间片内EV充电需求的同时优化系统电费。实验结果表明,基于EGAHR算法的策略相比基于遗传算法、灰狼算法、粒子群算法等经典算法的能量调度策略节约了2.1%~21.9%的充电成本。另外,EGAHR算法可以为多种不同的EV充电模型和差异化电价趋势模型提供参考,为PSCS合理配备储能系统和光伏提供科学经济的部署方案。

全文