摘要
针对因常规残差网络(ResNet)结构缺少跨维度特征整合而导致遥感图像场景分类准确率不高的问题,该文提出了一种改进残差网络的遥感图像场景分类方法。首先,利用残差结构降低深层网络的复杂度,减少参数量,解决网络退化的问题;然后,采用1×1的卷积结构降低特征维度,增加网络的宽度,整合遥感图像的空间信息和纹理特征。在NWPU-RESISC45数据集上进行实验,准确率达到了93.63%,较集成卷积神经网络方法的分类精度提高了1.1%,体现了改进的残差网络在遥感图像场景分类中的有效性和可行性。
- 单位