摘要
多尺度分割是图像面向对象分类的基础,针对不同区域特征最优分割尺度确定的主观性以及采用聚类算法时聚类中心确定的随机性,提出了一种联合降维与聚类算法的面向对象多尺度分割优化算法。该算法首先利用主成分分析法(PCA)降维排序后的结果产生初始聚类中心;然后采用K-means聚类和度量每一个像素点合并的概率,从而得到适应不同研究区域内不同尺度地物的分割结果。采用多个影像数据库,通过引入聚类评价指标(内部评价指标和外部评价指标)、分割评价指标(分割精度、过分割率和欠分割率)并结合现有的图像分割方法及原始的K-means算法、与PCA降维后的K-means聚类对比分析。研究结果表明:经过降维处理后进行的聚类算法稳定性更高;与传统的聚类算法相比,结合PCA降维更能自动识别最优分割尺度;降维技术和聚类算法联合之中,目视和定量评价指标表明经过降维预处理后的聚类能得到更高质量的分割结果。
- 单位