摘要

随着图卷积网络的发展,图卷积网络已经应用到很多任务中,其中就包含文本分类任务。通过将文本数据表示成图数据,进而在图上应用图卷积,从而捕获文本的结构信息和单词间的长距离依赖关系获得了良好的分类效果。但将文本建模成图模型后,图卷积网络面临着文本上下文语义信息和局部特征信息表示不充分的问题。本文提出一种新的模型,利用双向长短时记忆网络(Bi_LSTM)和卷积神经网络(CNN)混合提取文本的上下文语义信息和局部特征信息去丰富图卷积网络(GCN)的文本表示,从而弥补图卷积网络的不足,同时使用图池化层筛选出重要节点帮助卷积神经网络捕获文本深层局部特征信息,使得模型能更好的表示文本信息。通过在三个英文数据集上的实验结果表明,该模型相比于基线模型有较好的分类效果。