摘要

针对迭代特征值最小二乘法不具备鲁棒性,提出一种改进的统计分析方法,用于含有大量异常点的点云的平面拟合.首先由移动最小二乘法拟合抽样点的近邻域平面,采用最小平方中位数法选择拟合模型,将该模型作为初始模型调用迭代特征值最小二乘法对点集拟合,通过逐渐剔除异常点,不断精炼模型,最终得到较精确的平面模型.此算法克服了一般向后剔除方法的缺点,具有了鲁棒性,且不失原方法的精确性,同时提高了迭代收敛速度.